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Abstract

An area-preserving implementation of the 2nd order Runge–Kutta integration method for equations of motion is pre-
sented. For forces independent of velocity the scheme possesses the same numerical simplicity and stability as the leapfrog
method, and is not implicit for forces which do depend on velocity. It can be therefore easily applied where the leapfrog
method in general cannot. We discuss the stability of the new scheme and test its performance in calculations of particle
motion in three cases of interest. First, in the ubiquitous and numerically demanding example of nonlinear interaction of
particles with a propagating plane wave, second, in the case of particle motion in a static magnetic field and, third, in a non-
linear dissipative case leading to a limit cycle. We compare computed orbits with exact orbits and with results from the leap-
frog and other low-order integration schemes. Of special interest is the role of intrinsic stochasticity introduced by time
differencing, which can destroy orbits of an otherwise exactly integrable system and therefore constitutes a restriction on
the applicability of an integration scheme in such a context [A. Friedman, S.P. Auerbach, J. Comput. Phys. 93 (1991)
171]. In particular, we show that for a plane wave the new scheme proposed herein can be reduced to a symmetric standard
map. This leads to the nonlinear stability conditionDtxB 6 1, whereDt is the time step andxB the particle bounce frequency.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

An essential ingredient of non-relativistic, electrostatic particle-in-cell (PIC) codes with many particles and
evolving on long time scales is a sufficiently simple, accurate and stable integration scheme for the electron and
ion equations of motion
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dve;i=dt � _ve;i ¼ qEz=mþ F e;i; dz=dt � _z ¼ v; ð1Þ

where EZ is the self-consistent electric field, Fe,i are the external forces and q/m is the particle charge to mass
ratio. An integration scheme having the desired properties is the well-known time-centered leapfrog (LF)
method [1]
vnþ1=2 � vn�1=2 ¼ Dt an; znþ1 � zn ¼ Dt vnþ1=2 ð2Þ
accurate to 2nd order with respect to the time-step Dt, and implicit when the acceleration an depends on veloc-
ity. The subscripts in (2) indicate time-levels. An implicit implementation is straightforward only in exception-
ally simple cases, such as, e.g., the case of the Lorentz force (see Section 4) or of linear damping, by taking
vn = (vn+1/2 + vn� 1/2)/2. However, such a treatment is computationally very demanding, possibly prohibitive,
for more complicated situations of interest such as dissipative systems or in Monte-Carlo treatments of par-
ticle collisions [2] and/or interactions of particles with radio-frequency fields [3]. Another limitation which
owes to the half time-step shift between position and velocity in the LF method is the need for a constant time
step during the integration process.

In this paper, we look for a viable time-aligned alternative to the LF method. We concentrate on the 2nd
order accurate Runge–Kutta (RK) method [4,5] which appears promising, since time-centering in the method
is approximately achieved by anticipating an average force acting between two successive time steps. For equa-
tions of motion the usual 2nd order RK algorithm gives
vnþ1 � vn ¼
Dt
2
ðan þ a�nþ1Þ; znþ1 � zn ¼

Dt
2
ðvn þ v�nþ1Þ;

an ¼ aðtn; vn; znÞ; a�nþ1 ¼ aðtn þ Dt; vn þ Dt an; zn þ Dt vnÞ;
v�nþ1 ¼ vn þ Dt an.

ð3Þ
The scheme is explicit and requires two evaluations of the applied force, one at t = tn and one at t = tn + Dt.
The scheme is clearly only as good as the approximation for a�nþ1. We will therefore also consider the midpoint
Runge–Kutta scheme [5], which, in general, also requires two evaluations of the force per time-step, one at tn
and the other at the mid-point tn + Dt/2:
tm ¼ tn þ Dt=2; vm ¼ vn þ anDt=2; zm ¼ zn þ vnDt=2;

an ¼ aðtn; vn; znÞ; am ¼ aðtm; vm; zmÞ;
vnþ1 � vn ¼ Dt am; znþ1 � zn ¼ Dt vm.

ð4Þ
We will show here that an area-preserving combination of the two methods (3) and (4) is not less stable than
the LF method in the presence of linear and nonlinear oscillations. While the linear stability of time-differ-
enced integration schemes is well-understood as being related to normal modes which are not modes of the
exact equation [6–9], the application of the LF method to nonlinear oscillations was shown by Friedman
and Auerbach [10] and Auerbach and Friedman [11] to be limited beyond a certain threshold by ‘‘numerical
stochasticity’’, which arises from time differencing rather than from any intervening physical process. Auer-
bach and Friedman [11] also demonstrate the connection between area preservation and long term stability
of the computed orbits. Following the Hamiltonian spirit of [10,11], we emphasize here the analogy between
a 2nd order time-differencing scheme for an equation of motion and a mapping of phase space (v,z) onto itself.
The analogy is useful in as much as the mapping represents a perturbation of an originally integrable Ham-
iltonian. Thus, area-preservation of the associated time-differencing scheme is essential for a number of related
reasons [12]. First, the integration scheme should preserve constants of motion and make them apparent in the
surface of section. Second, we show here that area-preservation is necessary for (at least conditional) numer-
ical linear stability of the differencing scheme. Since the time differencing constitutes a perturbation of an inte-
grable Hamiltonian, the surface of section will reveal the destruction of regular particle orbits caused by the
time differencing, rather than by perturbations of physical origin. The applicability of a particular integration
method to nonlinear oscillations is therefore limited by the associated stochasticity threshold.

We will discuss the stability and numerically test the performance of the new integration scheme proposed
herein (Eq. (13) of the next section) by comparing particle orbits with results from other schemes and mainly
with exact and LF-produced reference results. For the tests we selected three familiar problems of interest. The
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first is particle motion in a propagating plane wave. The second is the four-dimensional case of particle motion
in a static magnetic field where the force depends on velocities, and for which the LF method has a simple
implicit solution. This case is interesting because the higher (than two) dimensionality allows more than
one implementation of a particular integration scheme. Also, the velocity space gyro-orbit is mathematically
equivalent to the harmonic oscillator. Both above cases are conservative and the equations have an exact solu-
tion. The third test case is the non-conservative case of a harmonic oscillator perturbed by a nonlinear dissi-
pative term, such as the van der Pol oscillator [13], leading to stable motion on a limit cycle.

Given the central role occupied by equations of motion in PIC codes, the problem of finding a suitable inte-
gration scheme has in the past received considerable attention ([6–9] and references therein). Along with the
effort of developing suitable schemes, methods for the analysis of their numerical stability were developed by
Langdon [6], Cohen et al. [7], and Hockney and Eastwood [9]. Numerical amplitude instability and phase shift
can arise in finite difference schemes even for an inherently stable equation because of normal modes which are
not solutions of the exact equation [6–9]. The approach in [6,7] is based upon a class of integration schemes
which differ from the leapfrog scheme by the possible effect of the acting force at past time levels, an� 1, an� 2

etc. If an+1 is also involved then the scheme is implicit. The dispersion relation and stability conditions for this
particular class of schemes was derived in [6,7] for the linear harmonic oscillator force a ¼ �zx2

0. The method
is reviewed, together with a discussion of a number of specific integration schemes, in Birdsall and Langdon
[8]. By contrast, Hockney and Eastwood [9] discuss stability with respect to round-off errors, i.e., with respect
to perturbations e of particle velocity and position, for a force of arbitrary form. In the Hockney and East-
wood method, the integration scheme time-difference equations are expanded around the round-off error-free
quantities to 1st order in e which produces the transfer matrix relating successive time levels of the perturba-
tion evolution. Eigenvalues of the transfer matrix determine the stability properties and the eigenvalue equa-
tion is equivalent to the dispersion relation.

The present analysis of integration schemes begins with the discussion of linear stability using the methods
quoted above. This is followed by the analysis of nonlinear stability, specifically of the intrinsic stochasticity
associated with the time differencing of electron interaction with a plane wave. This leads to a numerical sta-
bility criterion for integrating the nonlinear oscillator. We view an integration scheme as an iterated map in
phase space (v,z) and exploit some useful properties of such maps, particularly the area-preservation property
expressed quantitatively by its Jacobian [12]. In particular, area preservation of a non-implicit integration
scheme should be expected for a conserved Hamiltonian, i.e., in the absence of damping or amplification in
the system. This is not necessarily true for implicit schemes [10]. Further for non-implicit schemes, we shall
also see that if J > 1 then the integration scheme is numerically unconditionally unstable and that J = 1 is
a necessary condition for numerical stability. The standard RK schemes (3) and (4) are never area preserving
and thus are numerically unconditionally unstable. However, conditional stability can be attained by an
implementation which preserves phase space area.

For numerical testing of the various schemes under consideration here we choose, at an advantage, closed
orbit solutions. The first two cases, trapped electron orbits in a non-linear wave and orbits in a static magnetic
field, are exactly integrable. In the first case the motion has a first integral in the wave reference frame so that
the long-term stability of computed trapped orbits is easily assessed on comparison with the exact orbit. Fur-
thermore, the collapse of orbits due to intrinsic stochasticity is conveniently visualized in Poincare surface of
section plots. The second example brings to light certain specific aspects of multi-dimensional systems, such as
more freedom in the choice of an appropriate implementation. In our third test case – of the nonlinearly per-
turbed harmonic oscillator – the orbit winds up onto a stable limit cycle which again is a convenient reference
orbit for comparison with the computed solution.

In Section 2, we discuss numerical stability and accuracy and in Section 3, we discuss numerical integration
in the nonlinear case of a periodic force. In Section 4, we consider integration in the presence of a static mag-
netic field and of nonlinear dissipation. Finally, in Section 5, we give our conclusions.

2. Stability and accuracy of 2nd order Runge–Kutta integration schemes

As discussed in detail in [8], the self-consistent electric field EZ is only a function of time and particle posi-
tion. If, in addition, the external forces ae,i acting on the particles are also independent of velocity, then the
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leapfrog method (2) can be used for explicitly integrating the equations of motion (1). The LF method is 2nd
order accurate and manifestly time-centered. Furthermore, the mapping (2) is area preserving, quantitatively
expressed by a unity Jacobian:
J ¼ det
ovnþ1

2
=ovn�1

2
ovnþ1

2
=ozn�1

oznþ1=ovn�1
2

oznþ1=ozn�1

 !
¼ det

1 Dtoan=oz

Dt 1þ Dt2 oan=oz

� �
¼ 1. ð5Þ
In Section 2.1, we will show that area preservation is a necessary but not sufficient stability condition. For
example, the stability condition for the LF scheme is [9]
0 6 �C 6 2; C ¼ ðoa=ozÞðDt2=2Þ. ð6Þ

For the linear oscillator a ¼ �x2

0z the condition (6) implies x0Dt 6 2, in agreement with previous results [5,6].
It is interesting to evaluate the leapfrog Jacobian for a velocity-dependent force a = a(tn,vn,zn). Approximat-
ing vn by the average vn = (vn+1/2 + vn� 1/2)/2 gives
JLF ¼
1þ Dt

2
oa
ov

1� Dt
2

oa
ov

. ð7Þ
As expected, area is not preserved in this case. Iterations of an implicit scheme are computationally too
demanding in most situations of interest but for linear damping where the force is given by a = a(t,z) � mv
the leapfrog scheme takes the form
vnþ1=2 � vn�1=2

1� mDt=2
1þ mDt=2

¼ Dt aðtn; znÞ
1þ mDt=2

; znþ1 � zn ¼ Dt vnþ1=2 ð8Þ
which could be used for a reference calculation. The solution naturally tends to either a stable focal point or it
diverges, depending respectively on the sign of m. Therefore, in Section 4 we instead deal with velocity depen-
dent systems which exhibit easy-to-monitor finite-size stable orbits. First, we deal with the four-dimensional
velocity-dependent magnetic field interaction which conserves energy, and then with the perturbed harmonic
oscillator whose solution tends to a stable limit cycle.

Having previously emphasized that an integration scheme for a Hamiltonian system should preserve area,
our principal task now is to identify such an integration scheme which unlike the leapfrog scheme is not implicit
for forces dependent on velocity. Let us therefore consider the 2nd order Runge–Kutta (RK) schemes (3) and
(4). These two basic schemes are never area preserving. For example, the Jacobian of the transformation (3) is
JRK ¼ 1þ Dt
2

oa
ov

þ oa�

ov

� �
þ ðDtÞ3

4

oa
oz

oa�

ov
� oa

ov
oa�

oz

� �
þ ðDtÞ4

4

oa
oz

oa�

oz
. ð9Þ
If the force does not depend on velocity, then to 4th order in Dt
JRK ¼ 1þ ðDtÞ4

4

oa
oz

� �2

þOðDt5Þ. ð10Þ
Hence, JRK > 1 to leading order in Dt. This, as we shall see below, implies unconditional numerical instability
with respect to perturbations of the solution.

We now find it useful to introduce the concept of semi-implicitness. In a mapping of phase space ~w ¼ ð~v;~zÞ
onto itself, each component wa can in general be given as a function of both the old (nth time level) and the
new components, i.e., ~wnþ1 ¼ fwð~wn;~wnþ1Þ. Such a mapping is termed explicit if the transformation functions fw
do not depend on new components ~wnþ1 and is termed implicit if at least for one of the components,
ofwa=owa;nþ1 6¼ 0. We term a mapping semi-implicit if for all components ofwa=owa;nþ1 ¼ 0 but for at least
one component, ofwa=owb;nþ1 6¼ 0; a 6¼ b. By this definition the LF mapping (2) is semi-implicit while the
RK mappings (3) and (4) are explicit.

The schemes (3) and (4) can be immediately substantially improved, without any extra effort, by a semi-
implicit implementation. In the two-dimensional case this is trivially achieved by using the calculated velocity
vn+1 in the position equation instead of the 1st order correction anticipated by the RK method. The Jacobian
can be then generally expressed in the form
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J ¼ ovnþ1

ovn
� Dt

2

ovnþ1

ozn
. ð11Þ
For scheme (3) this gives
JRK ¼ 1þ Dt
2

oa
ov

þ oa�

ov

� �
þ ðDtÞ4

4

oa�

oz
� oa

oz

� �
. ð12Þ
We now see that the involvement of the force at two different times, a(t) and a*(t + Dt) still destroys area pres-
ervation, even when the force is not velocity-dependent. We therefore next introduce a modification of Eq. (4)
that is semi-implicit through the evaluation of zn+1 � zn depending on an average of vn and vn+1 rather than
the extrapolation vm, such that Eq. (4) become:
tm ¼ tn þ Dt=2; vm ¼ vn þ anDt=2; zm ¼ zn þ vnDt=2;

an ¼ aðtn; vn; znÞ; am ¼ aðtm; vm; zmÞ;
vnþ1 � vn ¼ Dt am; znþ1 � zn ¼ Dt ðvn þ vnþ1Þ=2

ð13Þ
The Jacobian (11) of the mapping (13) is
JSIMP ¼ 1þ Dt
oam
ov

ð14Þ
to be compared with JLF, Eq. (7). In both cases J = 1 for a velocity independent force. Another important
distinction between (13) and the standard midpoint scheme (4) is that for a force independent of velocity only
one evaluation of the force is needed in (13). Henceforth, we refer to the scheme (13) as SIMP (semi-implicit
midpoint). We now turn to the analysis of linear stability of the preceding schemes.

2.1. Linear stability

We begin with applying the stability analysis method of Langdon [7] and Cohen et al. [8], who proposed
and studied in detail the class of integration schemes
znþ1 � 2zn þ zn�1

ðDtÞ2
¼ an þ c0ðanþ1 � 2an þ an�1Þ þ c1ðan � 2an�1 þ an�2Þ þ c2ðan�1 � 2an�2 þ an�3Þ þ � � � .

ð15Þ

which is implicit when c0 6¼ 0 and which differs from the LF time-difference equation
znþ1 � 2zn þ zn�1 ¼ ðDtÞ2an ð16Þ

by the effect of the force at different time levels.

The associated dispersion relation for the harmonic oscillator force a ¼ �zx2
0 with z = exp(�ixDt) is [7,8]
1=ðx0DtÞ2 þ c0 þ c1=zþ c2=z2 þ . . .þ z=ðz� 1Þ2 ¼ 0. ð17Þ

The RK schemes clearly do not belong the class (15) but can be made so by expressing a�nþ1 through the aver-
age an ¼ ðan�1 þ a�nþ1Þ=2. Eq. (3) then become
vnþ1 � vn�1 ¼
Dt
2
ð3an � an�1Þ; znþ1 � zn ¼ Dt vn þ

Dt2

2
an ð18Þ
which corresponds to (15) with c0 = 0, c1 = �1/2, and c2 = c3 = � � � 0. The associated dispersion relation
1=ðx0DtÞ2 þ c1=zþ z=ðz� 1Þ2 ¼ 0 ð19Þ

has at least one unstable root |z| > 1 for c1 < 0, so that the RK scheme is unconditionally unstable.

Let us now consider the SIMP method (13). Eq. (13) lead to
znþ1 � 2zn þ zn�1 ¼ ðDtÞ2ðan�1=2 þ anþ1=2Þ=2. ð20Þ
To order O(Dt4) this is just the leapfrog expression (16), stable in the interval x0Dt 6 2.



304 V. Fuchs, J.P. Gunn / Journal of Computational Physics 214 (2006) 299–315
Finally, consider the semi-implicit form of the basic Euler method (henceforth denoted by SIEL)
vnþ1 � vn ¼ Dt an; znþ1 � zn ¼ Dt vnþ1 ð21Þ
which is only 1st order accurate and clearly not time-centered. Nonetheless, Eq. (21) also lead to Eq. (16)! This
indicates that the correspondence between the position time-difference equation (15) and the actual integration
algorithm involving velocity is not unique. Clearly, the class (15) includes 1st order accurate schemes as a sub-
set. Since the 1st order SIEL scheme (21) is so simple, it is useful to know that its stability properties are iden-
tical to those of the LF and the SIMP schemes.

We now verify the above results by the amplification matrix method of Hockney and Eastwood [9]. The
present treatment clarifies in addition the role of the Jacobian matrix J. Any two-step integration scheme
has the general form of a mapping of (vn,zn) onto (vn+1,zn+1):
vnþ1 ¼ f ðvn; zn; vnþ1; znþ1Þ; znþ1 ¼ gðvn; zn; vnþ1; znþ1Þ. ð22Þ
Perturbations (ev, ez) of the variables (v,z) are easily found to satisfy the equation
A
ev
ez

� �
nþ1

¼ B
ev
ez

� �
n

; A ¼
1� of =ovnþ1 �of =oznþ1

�og=ovnþ1 1� og=oznþ1

� �
; B ¼

of =ovn of =ozn
og=ovn og=ozn

� �
ð23Þ
which has the Jacobian matrix (J) = A�1B. For an explicit scheme, the Jacobian equals det(B), for a semi-
implicit scheme, the transformation (22) is easily manipulated into explicit form with modified f and g. If
the eigenvalues k of J lie within or on the unit circle of the complex plane, then perturbations do not grow
in the integration process. This is the stability condition. The eigenvalues k are obtained from the characte-
ristic equation det (J � kI) = 0, i.e., from
k2 � kðof =ovþ og=ozÞ þ detðJÞ ¼ 0. ð24Þ
Eq. (24) for the LF, the SIMP, and the 1st order SIEL schemes is
k2 � 2k ð1þ CÞ þ 1 ¼ 0 ð25Þ
while for the basic RK schemes (3) and (4) we have
k2 � 2k ð1þ CÞ þ 1þ C2 ¼ 0. ð26Þ
The stability parameter C is defined in (6). The roots k1 and k2 of Eq. (24) satisfy k1k2 = det(J), so that the RK
schemes are unstable. In the interval given by (6) the roots of (25) are complex-conjugate and therefore stable.
Outside of the interval one of the roots is unstable.

For completeness we now give the accuracy of the above 2nd order schemes in terms of the magnitude of
the lowest order (i.e., 3rd) truncation terms.

2.2. Accuracy-truncation errors

Let V and Z be the exact solutions of the equations of motion. On substitution of these into (2), (4), and
(13), and expanding up to 3rd order in Dt, we obtain the following truncation error terms:
dLFz ¼ 1

24
_a ðDtÞ3; dLFv ¼ � 1

24
€a ðDtÞ3; ð27aÞ

dSIMP
z ¼ 1

12
_a ðDtÞ3; dSIMP

v ¼ 1

24
€a ðDtÞ3; ð27bÞ

dRK
z ¼ � 1

6
_a ðDtÞ3; dRK

v ¼ 1

12
€a ðDtÞ3; ð27cÞ
where _a ¼ da=dt. Hence if a = a(z), then _a ¼ vðda=dzÞ. The LF scheme is the most accurate of the three,
closely followed by the SIMP scheme.
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3. Calculation of orbits in a plane wave and nonlinear stability

In order to illustrate the practical performance of the schemes discussed above we now compute charged
particle trajectories in a non-linear propagating wave, i.e., we solve the equation
_v ¼ xvq sin ðx t � kzÞ; _z ¼ v. ð28Þ

Here vq = eE0/mx is the quiver velocity and E0 is the applied electric field strength. For our purposes it is con-
venient that a first integral exists in the wave frame of reference. This permits an easy check on the stability of
the integration process which is here related to the onset of intrinsic stochasticity. Below the stochasticity
threshold, the trapped particle orbits from the area-preserving LF and SIMP integration schemes exhibit out-
standing long-term stability owing to the existence of an invariant of the iterated difference equations [11].

The LF velocity vector is shifted back in time by half a time step with respect to the position vector. Just as
the LF velocities and positions have to be aligned for the calculation of kinetic and potential energies [8], such
alignment is necessary for the construction of LF phase-space orbits. We therefore use an aligned LF velocity
equal to the average between two successive velocity time levels. Auerbach and Friedman [11] use the term
‘‘isochronous leapfrog’’ for this version of LF and discuss a number of its convenient properties.

We work in normalized variables such that
s ¼ xt; f ¼ kz; u ¼ vk=x; du=ds ¼ Y 2 sinðs� fÞ; ð29Þ
where x2
B ¼ kxvq is the bounce frequency and Y = xB/x. With the transformation
f0 ¼ f� s; u0 ¼ u� 1 ð30Þ
the explicit time dependence is removed from (28) and the first integral is
u02 ¼ u020 þ 2Y 2ðcos f0 � cos f00Þ. ð31Þ

When u 02 is negative in some range of f 0 then the electron is trapped on a closed orbit within the separatrix,
given by u02 ¼ 2Y 2ð1þ cos f0Þ. Ideally, the particle will trace the trapped orbit indefinitely, but loss of accuracy
and stability of the integration process will lead to departures from the exact orbit (31). To select a particular
trapped orbit relatively close to the separatrix we set the initial condition to f00 ¼ 0 at the stable elliptic point
and u00 ¼ 1:5Y .

How stability is here related to intrinsic stochasticity is easily seen from the semi-implicit Euler SIEL
scheme (21), which in the normalized variables (29), (30) reads
u0nþ1 � u0n ¼ �DsY 2 sinðf0nÞ; f0nþ1 � f0n ¼ Dsu0nþ1 ð32Þ
Multiplying through by Ds immediately gives the standard map [12]
Inþ1 � In ¼ �K sinðUnÞ; Unþ1 � Un ¼ Inþ1; ð33Þ

where I = u 0Ds is a normalized action, U = f 0 is the angle variable, and K = (DsY)2 is the stochasticity param-
eter. Stochasticity onset occurs around K = 1 [12], i.e., around xBDt = 1. The isochronous leapfrog method
leads to a symmetrized time-centered version of (33) [10] and clearly has the same stochasticity threshold
K = 1.

The SIMP scheme (13) likewise leads to a standard map. With the same normalization as above Eqs. (13)
become
Inþ1 � In ¼ �K sinðUn þ In=2Þ; Unþ1 � Un ¼ ðIn þ Inþ1Þ=2 ð34Þ

so that with the new angle X = U + I/2 we immediately obtain
Inþ1 � In ¼ �K sinðXnÞ; Xnþ1 � Xn ¼ Inþ1. ð35Þ

The difference between the LF and SIMP standard maps is that the LF action period is 2p whereas the SIMP
action period is 4p, as is clear from (33) and (34). The action period equals the distance between period 1 fixed
points, i.e., between the primary islands of the mapping [12]. We also note that the semi-implicit Euler scheme
(21) has the same linear and nonlinear stability properties as the LF and SIMP schemes. This goes to show
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that a simple 1st order scheme can posses the same or better linear and nonlinear stability properties than
more accurate higher-order integration algorithms.

We now present some integration results as a function of the stochasticity parameter K. We will compare
LF and SIMP orbits with the exact orbit (31) and with orbits from the basic 2nd and 4th order RK schemes.
We compute the orbits in the fixed reference frame (u,f) and then transform them to the wave frame (u 0,f 0)
using (30).

For the first series of figures, Figs. 1–5, we compute trapped particle orbits for about 500 cycles. The ref-
erence exact orbits (31) are labeled EX, the LF orbits are labeled LF, the SIMP orbits (13) are labeled SIMP,
the SIEL orbits from (21) are labeled SIEL, and orbits from RK methods are labeled RK2 or RK4, respec-
tively. The separatrix is evident as the finer line. Fig. 1 shows the exact orbit (31), and the 2nd order RK and
SIEL orbits from, respectively, Eqs. (4) and (21), for weak non-linearity K = 0.05. The 2nd order RK result
has already collapsed, and the 1st order SIEL orbit is already deformed. With increasing K the deformation of
SIEL orbits increases, but the orbits remain stable up to the limit K = 1. In Figs. 2 and 3 we show the exact,
Fig. 1. (left panel) The separatrix and trapped particle orbits in the wave frame of (28) for K = (Dtx)2 = 0.05. Exact orbit from (31), SIEL
orbit from (21), 2nd order RK orbit from (3). (right panel) Zoom.

Fig. 2. (left panel) The separatrix, exact orbit, LF orbit, SIMP orbit, and orbit from the 4th order RK method, for K = 0.2. (right panel)
Zoom.



Fig. 3. Exact orbit, LF orbit, SIMP orbit, and orbit from the 4th order RK method, for K = 0.5, Y = 1.

Fig. 4. Exact orbit, LF orbit, SIMP orbit, and orbit from the 4th order RK method, for K = 1, Y = 1.
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LF, SIMP, and 4th order RK orbits for K = 0.2 and K = 0.5. The 4th order RK method [4] is not area pre-
serving and clearly possesses negative eigenvalues. Figs. 4 and 5 then indicate the collapse of the LF orbit at
the stability limit and beyond. Curiously, the SIMP orbit appears more resilient. The collapse of the 2nd and
4th order orbits observed in Figs. 1–5, even as early as for K = 0.05 in Fig. 1, emphasizes the importance of
using an area-preserving integration scheme for integrable Hamiltonian systems.

Complementing the single orbit calculations of Figs. 1–5 are the Poincare surface of section plots of Figs. 6
and 7, action versus phase mod2p. The phase is shifted by �p in order to center the primary islands. In each
surface of section we launched 50 particles with action initially uniformly randomly distributed in the interval
(0,4p). The difference between the leapfrog and SIMP originates from a different periodicity of the action in
these mappings. The figures confirm what be seen from (33) and (34), namely that the LF action period is 2p
while the SIMP action period is 4p. Thus, in the LF case the primary islands are seen in the figures to be sep-
arated by 2p, whereas in the SIMP case they are separated by 4p. The SIMP and LF surfaces of section in
Fig. 7 nicely indicate the appearance of secondary islands half-way between the primary islands.



Fig. 5. Exact orbit, LF orbit, SIMP orbit, and orbit from the 4th order RK method, for K = 1.3, Y = 1.

Fig. 6. Poincaré surface of section plots, normalized action versus (phase-p) mod2p, from LF, SIMP, 2nd order RK, and 4th order RK
integration schemes for Eq. (28). K = 0.1.
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Fig. 7. Poincaré surface of section plots, normalized action versus (phase-p) mod2p, from LF, SIMP, 2nd order RK, and 4th order RK
integration schemes for Eq. (28). K = 1.0.
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Already early on for K = 0.1 we note in Fig. 6 that orbits from the non-area-preserving RK schemes have
collapsed near and outside of the separatrix, while the LF and SIMP orbits remain regular. At the stability
limit K = 1 in Fig. 7 the RK cases are almost globally stochastic, while stochasticity in the LF and SIMP cases
is just starting to develop around and outside the separatices.

4. Particle orbits for velocity-dependent forces

4.1. Calculations of particle orbits in a static magnetic field

Consider the equations of motion of a charged particle in a static magnetic field oriented along the z-axis of
a Cartesian coordinate system~r ¼ ðx; y; zÞ:
dvx
dt

¼ xvy ;
dvy
dt

¼ �xvx;
dvz
dt

¼ 0;
d~r
dt

¼~v. ð36Þ
The system (36) is four-dimensional since the z-direction separates out and plays no role. Kinetic energy is
conserved so we can compare numerical integration results with the reference gyro-orbit invariants
v2x þ v2y � v20; ð37aÞ
½vx0 þ xðy � y0Þ�

2 þ ½vy0 � xðx� x0Þ�2 ¼ v20. ð37bÞ



We will present results from four different area-preserving integration schemes: Boris� scheme [8,14], SIMP,
and two different leapfrog schemes: implicit and semi-implicit. The system (36) is interesting since the higher
dimensionality allows more than one implementation of the LF and SIMP schemes. We also note that velocity
space of system (36) forms a self-contained subspace of phase-space and describes, in fact, the harmonic
oscillator, which is therefore automatically included here as a special case. For semi-implicit LF and SIMP
the linear stability criterion xDt < 2, discussed in Section 3, applies, but for implicit LF there is no restriction
on xDt [10]. We note in advance that the velocity space results from all these schemes appear acceptable; the
velocity-space gyro-orbit form Boris� method is of course exact. Substantial differences between some results
however appear in configuration space.

The computations are performed in normalized variables s, u and q, such that s = tx, ~v ¼ vT~u, ~r ¼ rL~q,
where x = eBz/m is the cyclotron frequency, vT is the thermal velocity, rL = vT/x is the Larmor radius, and
~q � ðn; g; fÞ. Eqs. (36) thus become
dux
ds

¼ uy ;
duy
ds

¼ �ux;
duz
ds

¼ 0;
d~q
ds

¼~u. ð38Þ
The implicit LF scheme uses un = (un+1/2 + un� 1/2)/2 on the right-hand side of the first two equations in (38)
and the centered velocities in the position equations. Specifically,
q 7 
 ( u T J 
 E T 5  1 5 1 . 6 1 7 1 j 
 / F 6  1  T f 
 1 . 4 8 . 3 8 7 4 5 - 7 m p b  T D . 7 6 F 1 1 a 6 6 0 4 5 9 7  T m 
 ( Þ ) T j 
 / 1 5 8 . 4 5 6 6  5 1 5 . 5 0 8 5  T m 
 ( ; ) T j 
 E T 
 1 1  0  T D 
 c 2 4 2 . 6 1  T f 
 9 . 9 6 2 6  0  0  0 . 5 5 2  0  T D 
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From a computational point of view an important distinction between the semi-implicit SILF and SIMP
schemes (41) and (44) and the implicit LF scheme (39) are the respective dispersion relations. For the implicit
scheme with a = Ds/2 we have a ¼ tanðaÞ, which always has a solution [10], whereas in the SILF and SIMP
cases a ¼ sinðaÞ, which gives the well-known stability limit a < 1.

We also show results from the Boris integration scheme for particle motion in a static magnetic field [8,14]
applied to system (36). We note in this context that the invariant (37a) is reproduced exactly by that method,
since the velocity gyro-motion is resolved exactly:
Fig. 8.
space r
uxðsÞ ¼ ux0 cos sþ uy0 sin s; uyðsÞ ¼ �ux0 sin sþ uy0 cos s. ð45Þ
Two different time sequences of velocity are necessary here. First, starting at s = 0 gives the time-aligned
velocity orbit for comparison with orbits from other schemes. Second, for the centered calculation of posi-
tions, the velocities are determined at half time intervals by an initial backward shift through a half rotation
�s/2.

We now discuss some of the numerical results, keeping in mind that the velocity gyro-orbit also represents
the harmonic oscillator. Well below stability threshold Ds � 2 the 2nd order RK orbit from Eq. (3) already
starts spreading out because of area non-preservation. In contrast, the velocity space orbits from the area-
preserving LF, SILF, SIMP and Boris schemes practically overlap and agree with the exact orbit (37a). Some
of the sub-threshold results are illustrated in Fig. 8 where we show the exact, SIMP, and 2nd order RK velo-
city and configuration space orbits for Ds = 0.15. The initial conditions for the calculations of Figs. 8–10 are
ux0 = uy0 = 1, n0 = g0 = 0.

As stability threshold Ds = 2 is approached the LF, SILF and SIMP schemes still produce good velocity
space gyro-orbits, but the corresponding configuration space gyro-orbits start disagreeing with each other
and with the exact orbit calculated from d~r=dt ¼~v. This is shown in Figs. 9(a) and (b) where we compare
results from SILF and SIMP schemes, from respectively (41) and (44), with the respective exact orbits
(37a), (37b) at near threshold conditions Ds = 1.

Completing this picture is Fig. 10 where for the same near-threshold conditions Ds = 1, we compare results
from the LF, SIMP and Boris� schemes with the respective exact orbits (37a), (37b). The Boris orbit is labeled
B. Figs. 9(a) and 10(a) attest to the area-preserving property and outstanding stability of the SIMP scheme in
this particular example of linear oscillations in velocity space. On the other hand, Figs. 9(b) and 10(b) show a
substantial departure of the LF and SIMP spatial gyro-orbits from the exact orbit (37b). More work is needed
The exact, SIMP, and 2nd order RK gyro-orbits for xDt = 0.15. (left panel) Velocity space results, (right panel) configuration
esults.



Fig. 9. The exact, SILF and SIMP gyro-orbits for xDt = 1. (left panel) Velocity space results, (right panel) configuration space results.

Fig. 10. The exact, LF, SIMP, and Boris gyro-orbits for xDt = 1. (left panel) Velocity space results (the exact, LF and Boris orbits
overlap), (right panel) configuration space results.
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to understand the observed differences in configuration space when more than two dimensions of phase space
are involved.

4.2. Particle orbits in the presence of nonlinear dissipation

In order to demonstrate the performance of the SIMP method in a non-linear case of a velocity-dependent
force, we consider the model problem of a harmonic oscillator perturbed by a non-linear dissipative term, in
normalized variables s, u, f such that with s = xt we have
du=ds ¼ l ð1� f2Þum � f; df=ds ¼ u. ð46Þ



Fig. 11. Numerical solutions of Eq. (46) for Ds = 0.1 and l = 0.01. The solution from SIMP is marked by dots, the solutions from LF and
the 4–5th order RK method are marked by a line. (left panel) van der Pol equation m = 1, the limit cycle is the circle q = 2, (right panel)
m = 3.
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We consider two cases of the exponent m: m = 1 and m = 3. In both cases the asymptotic solution is a stable
limit cycle, i.e., a closed orbit whose radius only depends on m and on the perturbation parameter l. The equa-
tion thus describes a stable oscillatory system independent of the initial state. For m = 1 Eq. (46) describes the

van der Pol oscillator which for small l � 1 tends to a stable limit cycle of radius q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ f2

p
ffi 2 [13]. The

m = 1 case has a simple LF implicit solution which is shown together with the SIMP solution and the limit
cycle in Fig. 10(a). For m = 3, the non-linearity is stronger, the asymptotic solution is still a limit cycle,
and an LF implicit solution is no longer easy to implement so that in Fig. 10(b) we compare the SIMP solution
with the solution from the explicit 4–5th order RK method of [15].

In the m = 1 van der Pol case of Fig. 11(a), the SIMP and LF orbits agree with each other very nicely and
wind up onto the predicted limit cycle q = 2. In the strongly non-linear case m = 3 of Fig. 11(b), we observe
the SIMP solution tracking the more accurate 4–5th order RK solution towards a common limit cycle quite
faithfully. The calculations of Fig. 11 were done with a time step Ds = 0.1 and a perturbation parameter
l = 0.01.

5. Conclusion

An integration scheme for particle equations of motion in a PIC code should ideally be simple, accurate and
not unconditionally unstable. Simplicity is required owing to the large number of particles in such codes, while
accuracy and stability are essential when the equations are advanced for many time steps. Accuracy has to do
with truncation errors and stability with the evolution of perturbations of the exact solution. A compromise
between simplicity and accuracy leads to the choice of 2nd order accurate schemes. One such scheme which
satisfies the above criteria is the well known leapfrog method, implicit for forces dependent on velocity. With
the exception of a few simple cases (e.g., Lorentz force, linear damping) an implicit treatment is computation-
ally very demanding, time consuming and possibly prohibitive altogether. Where easily applicable, the leap-
frog method has become, because of its desirable properties enumerated above, a standard for assessing the
properties and performance of other candidate integration schemes for the equations of motion for PIC codes
[6,7]. A more recent Hamiltonian treatment of the leapfrog method applied to nonlinear oscillations [10,11]
has revealed ‘‘numerical stochasticity’’ [10], i.e., stochasticity arising from the time differencing, as the princi-
pal limiting factor in the integration process of non-linear periodic systems. Hand-in-hand with the study of
numerical stochasticity, the process of long-term phase error accumulation was analyzed and the existence of a
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constant of motion in the discrete integration process was recognized as being responsible for the long term
survival of closed particle orbits [11].

In this context we have set here out to develop and test a more generally applicable explicit alternative to
the LF method. In this endeavor we concentrated on the 2nd order Runge–Kutta schemes. At the outset their
attraction is simplicity and approximate time-centering. However, unlike the usual leapfrog scheme for veloc-
ity independent forces, the standard 2nd (as well as 4th) order RK schemes presented in the literature [4,5] do
not preserve phase space measure and are numerically unconditionally unstable. In order to understand why
such schemes are in principle objectionable, it is useful to realize that the time differencing constitutes a per-
turbation of the system Hamiltonian and view the time differencing as a mapping of phase space onto itself.
The mapping produces phase space flow constrained by the perturbed Hamiltonian and should therefore be
area preserving [12]. Led by this principle, we constructed the area-preserving combination (13) of the basic
2nd order schemes (3) and (4) and demonstrated its outstanding qualities in the examples of Sections 3 and
4. The procedure we recommend for securing area-preservation is given in Sections 2.1 and 4.1: implement
the time differencing of as many phase space variables as possible semi-implicitly, i.e., using variables of
the next time step already calculated on the given time step. At least one variable has to be of course advanced
explicitly and this is done using the midpoint force as is Eqs. (13).

We have shown that the new integration scheme SIMP (semi-implicit midpoint), Eq. (13), shares identical
linear and non-linear stability properties with the leapfrog scheme. For forces independent of velocity both the
LF and SIMP schemes require only one evaluation of the force per time step. For forces dependent on veloc-
ity, the LF scheme becomes implicit, whereas the SIMP scheme remains semi-implicit and requires two eval-
uations of the force per time step.

Another problem of general interest is the numerical stability of an integration scheme in wave–particle
interactions. This involves extending the well-known linear oscillator stability condition Dtx0 < 2 to nonlinear
oscillations driven by a periodic force. Friedman and Auerbach [10] have previously established that numerical
stability for nonlinear periodic systems is related to intrinsic stochasticity induced by the time differencing. In
this respect it is helpful that for a plane wave the leapfrog scheme (2) as well as the new SIMP scheme (13) can
be written in form of the standard map. This then immediately leads to the integration stability condition
DtxB < 1, where xB is the particle bounce frequency.

This work was motivated by the need to develop a suitable integration method for a quasi-neutral PIC code
for application to tokamak edge problems. In a quasi-neutral PIC code the self-consistent field is determined
not from the Poisson equation but rather from the fluid electron momentum equation [16], so that the self-
consistent force depends on the electron pressure gradient. Other velocity-dependent forces in PIC simulations
which prohibit the use of the leapfrog method are, e.g., external Langevin processes which can describe par-
ticle collisions and/or radio-frequency plasma heating. Our work on the development and application of a
quasi-neutral PIC code to tokamak plasma edge problems will be presented elsewhere [17].

Note added in proof

In regard to the area preservation property of maps used herein, we thank Dr Dominique Escande for
pointing out to us during a recent discussion the more general nature of symplectic maps relevant in more than
two dimensions, and therefore applicable in the four dimensional case of Section 4.1.
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